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Abstract  

This study examines the relationship between fear of crime emotions, Electroencephalogram 
(EEG) reactions, and variations in nighttime illuminance within a virtual environment. The study 
analyzed the perceptions of participants in diverse nighttime illuminance scenarios in Seoul 
using EEG analysis and fear of crime surveys to uncover new insights. This study aims to 
understand the influence of biological responses on fear perception in virtual reality (VR) by 
integrating EEG data. Illuminance levels were measured at four locations, followed by 
environmental recordings using 360-degree cameras. Ninety-five participants evaluated fear of 
crime in ten randomly selected VR videos experienced through head-mounted displays. This 
study examines the correlations between fear of crime in virtual reality (VR) environments and 
EEG measurements using cross-classified multilevel analysis. The results show that illuminance 
affects both fear of crime and EEG. Furthermore, the study finds that EEG significantly impacts 
fear of crime, indicating its usefulness as a complementary perceptual scale. The analysis also 
reveals that the Valence index of EEG significantly influences fear of crime. It highlights the 
potential application of EEG in urban design practices. This study provides insights into the 
relationship between architectural environmental factors, survey responses, and biological 
responses in virtual environments. The results demonstrate the compatibility of EEG with 
survey responses and underscore the value of EEG in urban design. 
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Introduction 

Urban development plays a significant role in creating safer environments. In particular, 
urban illumination, which improves with development, facilitates safe activities after dark (Hu 
et al., 2020). Cozens and Sun (2019) cited Maslow's hierarchy of needs to argue that safety is a 
fundamental human requirement after physiological needs, encompassing protection from 
harm, law and order, and freedom from fear.  Safety is broadly divided into actual and 
perceived social safety, the latter measured by perceived personal danger, risk, and fear of 
crime (Boomsma & Steg, 2014a). Safety and fear of crime are critical issues that can directly or 
indirectly affect various aspects of life, including nocturnal activities (Evans & Fletcher, 2000). 
Therefore, illuminance is an effective means of reducing fear of crime, which has a significant 
impact on daily life (Boyce et al., 2000). Previous studies have analyzed the effectiveness of 
illumination in preventing crime and its correlation with fear of crime (van Osch, 2000; Wu, 
2014).  However, these studies have not systematically examined how safety perceptions vary 
according to the spatial characteristics of different environments and the brightness levels of 
installed illuminance. This gap exists because it is challenging to create varied experimental 
environments in actual urban areas and conduct participant-based experiments.  Virtual reality 
(VR) can be used to address this issue. Studies utilizing VR technology (Boomsma & Steg, 2014a, 
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2014b; Nasar & Bokharaei, 2017; van Rijswijk & Haans, 2018) have investigated how 
illuminance affects perception. They have shown that brightness levels influence individuals' 
sense of prospect, refuge, and concealment, ultimately affecting safety perceptions.  However, 
some studies have used virtual environments (Boomsma & Steg, 2014a, 2014b; Nasar & 
Bokharaei, 2017; van Rijswijk & Haans, 2018; Kim & Noh, 2018). It has been noted that relying 
solely on traditional visual cues to simulate an authentic presence has limitations (Mouratidis & 
Hassan, 2020; Kim & Lee, 2022). 

Furthermore, surveys conducted in virtual environments may be limited by subjective 
participant responses. To address this limitation, it is necessary to develop a method for 
dynamically detecting users' emotional states during surveys (Martinez-Tejada, 2021), as well 
as an objective measure of the sense of presence experienced by participants. In the realm of 
built environments, research is currently being conducted using EEG technology based on 
biosignals (Ji, 2020; Olszewska-Guizzo, 2020). Perceptions in fear-inducing environments can 
elicit a combination of positive and negative emotions (Bower, 2019). EEG technology is 
considered essential in such studies to provide an objective assessment of how environmental 
or personal characteristics influence survey responses (Son et al., 2023). However, measuring 
EEG directly in outdoor settings is impractical due to contact issues and numerous external 
variables (Marin-Morales, 2018). This study comprehensively examines the effects of 
illuminance on fear of crime and electroencephalogram using virtual reality (VR) technology in 
Seoul, South Korea. Participants experience a sense of presence similar to being at the actual 
site through VR. To examine the correlation between illuminance and fear of crime, a cross-
classified multilevel analysis model was utilized. In addition, we used EEG data for cross-
validation to overcome the limitations of subjective responses. 

This research goes beyond examining the impact of illuminance on the fear of crime to 
understanding how illuminance influences electroencephalogram and, in turn, how these 
electroencephalograms affect the fear of crime. The study investigates whether illuminance 
affects not only subjective fear responses but also objective biosignals such as 
electroencephalogram. Finally, we aim to clarify the correlation between illuminance and fear 
of crime by elucidating the relationship between the physical environment or personal 
characteristics and EEG data. Our goal is to broaden the application of VR technology in urban 
design and safety by integrating it with biosignal data and exploring EEG indices and their 
potential applications in mitigating fear of crime. This approach bridges architecture, 
neuroscience, and criminology. 

 
Literature Review 
Crime fear and illuminance levels  

The fear of crime experienced by people is difficult to precisely define because its nature 
is ambiguous, but researchers generally define it as "perception of potential victimization" (Yin, 
1980). Fear of crime is defined as the fear of harm from strangers in everyday life (Conklin, 
1975). The causes of fear of crime include both individual and environmental dimensions. Early 
studies on fear of crime suggested that individuals' direct experiences of crime victimization 
influence fear of crime (Skogan, 1986). However, findings suggesting that women or the elderly 
experience higher levels of fear compared to men (Warr, 1984; Ferraro, 1996) led to the 
emergence of vulnerability theories, which discuss vulnerability in terms of individuals' 
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susceptibility and fear manifestation through information networks. Subsequently, theories 
relating fear of crime to community social control (Shaw and McKay, 1942) expanded fear of 
crime theories to include neighborhood dimensions. In summary, fear of crime is measured 
through emotions, and it can be influenced by individual characteristics as well as 
neighborhood characteristics, particularly physical environments. Considering environmental 
factors as causes of fear of crime, studies analyzing the relationship between physical space and 
fear of crime have been conducted. These studies aim to identify factors that people consider 
when perceiving space or experiencing emotions in space.   

During nighttime, illumination plays a significant role, with Loewen et al. (1993: 324) 
mentioning that the level of illumination is included in the characteristics of the physical 
environment. Illumination studies are mostly conducted through field-based experiments. 
Boyce et al. (2000) conducted experiments in urban and suburban areas, including roads and 
parking lots, to analyze the relationship between perceived safety and illumination levels to 
identify the brightness of illuminance perceived as safe by participants. Mattoni et al. (2017) 
conducted similar experiments on 10 similar roads to identify the brightness of illuminance 
perceived as safe. Subsequent studies targeted roads (Haans & de Kort, 2012), bridges, and 
spaces (Kim & Noh, 2018), with some studies measuring objective heart rate (Castro-Toledo et 
al., 2017) rather than subjective perceptions through surveys. Illuminance-related meta-
analysis conducted by Ceccato (2020) among 37 illuminance studies showed that 72% of them 
demonstrated the positive effects of illuminance on crime prevention.  Field experiments are 
conducted because the most basic method to measure fear of crime is to directly experiment in 
places where fear of crime is expected.  

However, there may be various uncontrollable variables in actual spaces. Due to these 
limitations, there are studies using virtual environments (Simulated VR) or photographs. 
Boomsma and Steg (2014a) conducted experiments using five virtual simulation environment 
photographs with varying illuminance levels, finding that participants felt safer in brighter 
photographs. Boomsma and Steg (2014b) analyzed differences in people's perceptions of safety 
using parameters such as level of entrapment in risky situations in addition to differences in 
illuminance levels, yielding significant results. Nasar and Bokharaei (2017) created virtual 
spaces based on brightness and uniformity of illumination, while van Rijswijk and Haans (2018) 
used 100 photographs of actual locations to identify the impact of factors related to safety on 
people's safety perceptions. They found that illuminance quality directly affects safety 
perceptions but to a lesser extent, and illuminance quality affects parameters such as prospect, 
refuge, and escape, which in turn strongly influence safety perceptions. This study showed 
similar results to the field-based study by Haans and de Kort (2012). Son et al. (2023) adopted a 
quasi-experimental approach using Recorded VR to analyze perceptions of fear of crime under 
various illumination conditions. They found that as illumination increased, fear of crime tended 
to decrease, and this change was more significant in areas with large differences in illumination 
between day and night. However, previous studies on illumination had the limitation of 
subjective data analysis based on surveys. 

 
EEG analysis to measure fear of crime 
 To objectively analyse emotional aspects, biometric data can be used. Virtual 
environments have the advantage of being able to control the environment, which allows 
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participants' biological responses to be seen without external interference (Choi, et al. 2023), 
making VR surveys in a laboratory setting an ideal environment for utilising biometric data 
(Marin-Morales et al., 2013). In particular, advances in EEG measurement technology have 
made it possible to measure human emotions more accurately and reliably (Cohen et al., 2017). 
EEG is an electrical phenomenon determined by the coupling and activity between nerve cells 
in the brain, also known as electroencephalogram (EEG), which is the amplification and 
recording of electrical potentials induced by electrodes attached to the top of the head (Teplan, 
2002). The recorded electrical signals can be transformed and represented on a frequency axis, 
and human brain waves are mostly between 0.5 and 60 Hz and are classified into 5 waves 
according to their frequency (Table 1) (Siirtola et al., 2023).  

Valence and Arousal have been commercialized as methods to identify emotions 
through EEG (Martinez-Tejada, 2021; Siirtola, 2023). Valence is the difference between the left 
and right brain. To be precise, emotional valence is expressed as the difference between the 
right posterior superior temporal sulcus and the medial prefrontal cortex (Kliemann et al. 
2016). The ratio of beta waves to alpha waves represents arousal. Arousal is the degree of 
excitement (Jebelli et al., 2018).  Table 2 summarizes the literature on EEG analysis of human 
emotions in VR. We found that EEG was used to measure the emotions of subjects in various 
fields. The emotional information measured through EEG was Valence, Arousal, etc. and to 
support this, the method of asking the experimenter through questions by an assistant such as 
Self-Assessment Manikin and Survey was mainly used. This demonstrated the utility of EEG, and 
in previous studies, the number of participants measured after EEG cleaning averaged 30, the 
average number of scenarios was 5.7, and the total number of scenarios (N) measured across 
participants averaged 180.5. 
 
Method  
Overview  

This study builds upon the foundational research conducted by Son et al. (2023), titled 
"Analysis of the relationship between nighttime illuminance and fear of crime using a quasi-
controlled experiment with recorded virtual reality." While Son et al. concluded that higher 
illuminance levels are associated with reduced fear of crime, our research seeks to provide a 
more nuanced understanding of this relationship by incorporating the analysis of 
electroencephalogram (EEG) data. This approach aims to bridge the gap between 
environmental psychology and physiological responses, offering insights into the embodied 
cognition of fear in urban settings. The primary objective of our study is to investigate the 
influence of nighttime illuminance on pedestrians' fear of crime and to examine how this 
relationship is mediated by physiological responses, as measured by EEG. By integrating EEG 
data, we aim to assess whether the reduction in fear of crime attributed to increased 
illuminance is directly reflected in the brain's electrical activity, thereby providing a more 
objective measure of fear. Our methodology involves a quasi-controlled experiment using 
virtual reality (VR) to simulate various street environments in Seoul with differing levels of 
illuminance. Participants were exposed to four scenarios, each designed to vary in illuminance 
and environmental characteristics. Horizontal and vertical illuminance data were meticulously 
measured and recorded as 360-degree videos, which were then post-processed to match the 
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perceived illuminance in the VR videos with that of the actual environments. EEG data were 
collected to examine participants' neurological responses to these environments. 

To ensure a comprehensive analysis, specific EEG metrics were chosen for their 
relevance to emotional and cognitive processing, including alpha, beta, and theta wave 
activities. These metrics were selected based on their established associations with attention, 
arousal, and emotional states in existing literature. Our study is anchored in the theoretical 
frameworks of environmental psychology and embodied cognition, positing that our 
perceptions and emotional responses to environmental stimuli are not only processed 
cognitively but are also manifested physiologically. This theoretical grounding informs our 
hypothesis that changes in environmental illuminance can modulate the physiological markers 
of fear. A total of 101 adults in their twenties were recruited for this study. This demographic 
was specifically chosen due to their high likelihood of engaging with VR technology and their 
potential variability in responses to fear of crime. The selection rationale is based on literature 
suggesting that younger adults may exhibit distinct physiological responses to fear stimuli 
compared to other age groups. The analysis revealed that EEG responses, particularly in terms 
of alpha and beta wave activities, varied significantly with changes in illuminance, suggesting a 
physiological basis for the reduced fear of crime at higher illuminance levels. These findings 
support the hypothesis that environmental design, through illuminance, can influence 
emotional states at a neurological level. All participants provided informed consent. The study 
was conducted following ethical guidelines, ensuring the confidentiality and anonymity of 
participant data. Measures were also in place to monitor participant well-being throughout the 
experiment, with the option to withdraw at any point. 

Our study contributes to the understanding of the complex interplay between urban 
design, particularly illuminance, and the subjective experience of fear of crime. By incorporating 
physiological measures, we offer a more objective perspective on how environmental factors 
influence emotional responses, providing valuable insights for urban planning and public safety 
strategies. This research not only extends the work of Son et al. (2023) but also opens new 
avenues for exploring the physiological dimensions of environmental psychology, highlight the 
importance of considering both psychological and physiological responses in the design of safer 
urban environments. 
 
Study areas for the controlled experiment 

According to data provided by Numbeo (2021), South Korea's crime index is recorded at 
26.68, which ranks 20th out of 137 countries in terms of safety. Seoul's score is 26.18, placing it 
52nd out of the world's 427 largest cities. Despite these relatively high levels of safety, South 
Koreans have a relatively high fear of crime. In the 2022 Social Safety Awareness Survey 
conducted by Statistics Korea, 39.1% of respondents said they did not feel safe from crime, the 
third highest rate after fear of emerging diseases and national security (war) in the wake of the 
COVID-19 pandemic. In particular, 29.6% of respondents felt unsafe walking at night and 44.0% 
of women felt unsafe. When asked why they were afraid to walk at night, 19.5% cited "lack of 
safety facilities such as street illuminance and CCTV" as the reason for their concern, meaning 
that one in three people aged 13 and over in South Korea are afraid to walk at night. 

The methodology for measuring illuminance and recording the virtual environment was 
as follows. The study was conducted using an omnidirectional virtual reality (VR) video 
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recording of a narrow alleyway in a relatively crime-free area of Seoul. However, Seoul has a 
large cluster of low-rise mixed-use residential and commercial buildings, which are generally 
classified as residential in terms of land use and are subject to the nighttime light pollution 
standard (illuminance ≤ 10 lux). In addition, narrow streets without sidewalks, shared by 
pedestrians and vehicles, are widespread in Seoul. This makes pedestrians vulnerable to crime. 
The criteria for selecting specific sites were as follows: Sites currently undergoing illuminance 
improvement projects were excluded to prevent skewed results. Furthermore, we prioritized 
sites with similar physical characteristics—such as building usage, spacing between buildings, 
and overall enclosure—to minimize the variability of external parameters. Following these 
criteria, seven locations within Seoul were initially considered. After conducting field surveys 
both during the day and at night, Sangdo 1-dong was ultimately chosen as the study area 
(Figure 1). The Sangdo 1-dong area encompasses all four types of environments outlined by the 
Korean Standard for Roadway Illuminance (KS A 3701, 2019), which includes: (A) residential 
areas with high pedestrian traffic, (B) residential areas with low pedestrian traffic, (C) 
commercial areas with high pedestrian traffic, and (D) commercial areas with low pedestrian 
traffic. To align with regional classifications specified in CIE-115:2010, pedestrian traffic 
volumes—originally detailed in the Ministry of Land, Infrastructure, and Transport's Road Safety 
Installation Guidelines—were categorized into two groups. Since the standard does not define 
thresholds for low vs. high pedestrian traffic, this classification was based on interpretations of 
the Korean Pedestrian Level of Service (PLoS) guidelines. All selected sites are narrow, mixed-
use streets without dedicated sidewalks, featuring an average width ranging from 3.7 to 7.6 
meters. Illuminance levels were measured across these four sites over four non-consecutive 
days in April 2021 (refer to Table 3). A total of 13 measurements were taken at 15-minute 
intervals around sunset—a period marked by rapidly decreasing illuminance levels. Subsequent 
measurements were recorded at intervals ranging from 30 to 60 minutes. During the 
measurement period, the weather remained cloudy, with negligible temperature fluctuations. 
Illuminance at each site was evaluated in terms of both vertical and horizontal illuminance 
(Figure 2). 

 
Controlled experiment with instrument 

For this study, 360-degree cameras were utilized to immerse participants in a realistic 
street-side environment of the selected study sites. Two distinct types of video recordings were 
produced: Initially, videos showcasing the study sites at specific times—corresponding with the 
illuminance level measurements—were played back for durations of three to six minutes, 
resulting in a total of 13 recordings per site. The camera, equipped with a lens positioned at a 
height of 160 cm, was stationed in pedestrian zones to minimize vehicle interference. These 
recordings were captured using two Panasonic GH5S cameras, each fitted with an Entaniya 
HAL200 3.6 MFT wide-angle lens. The raw footage was recorded in 4K 10-bit at 30 frames per 
second, compatible with the specifications of the head-mounted displays (HMDs) used in the 
VR experiments. LOG mode was enabled for recordings made after sunset, in complete 
darkness.  

The selection of videos and footage for the VR survey involved a rigorous post-
processing phase. Initially, videos from periods with negligible illuminance changes (specifically, 
the 8th, 10th, and 12th measurements in Table 3) were discarded to streamline the video 



UDA 2024 Conference Proceedings – Final paper format 
 

7 
 

editing and survey process. The remaining footage was then condensed into 30-second clips, 
with additional edits made to correct motion inconsistencies among people and objects (e.g., 
vehicles). Manual video stitching was employed to synchronize clips from both cameras, with a 
professional video editor addressing any automatic stitching errors. Unwanted elements, such 
as tripods, were removed, and sharpening effects were applied to enhance video clarity. Color 
adjustments and noise reduction were also performed to correct for color discrepancies 
inherent in log shooting, resulting in a final product that closely mimics the human visual 
experience. These video recording, editing, and post-processing tasks were carried out by a VR 
video production specialist.  

In the experiment, EEG signals were captured using the commercially available 
Interaxon MUSE2 headband (Model ID: MU-03), as per Krigolson et al. (2017). The reference 
electrode FPz (CMS/DRL) was placed on the forehead, with input electrodes positioned at the 
front (AF7 and AF8, made of silver) and back (TP9 and TP10, made of conductive silicone-
rubber) over each ear, as detailed by Silvia Angela Mansi et al. (2021) (see Figure 3). The device 
recorded signals at a 256 Hz sampling rate, with raw EEG data and sensor connectivity 
monitored through the Mind Monitor application, connected to a tablet PC via Bluetooth Low 
Energy (BLE). Given the susceptibility of EEG recordings to various types of noise and artifacts, 
meticulous processing and denoising were imperative. A lab assistant was on-site to oversee 
EEG measurements and ensure sensor connectivity. To refine data accuracy, a notch filter 
(50/60 Hz) was applied to eliminate electrical noise, a high-pass filter (0.1 Hz) to remove DC 
offsets and low-frequency artifacts, and a low-pass filter (45 Hz) to filter out high-frequency 
noise. Channels or segments exhibiting abnormalities or artifacts were identified and excluded 
from analysis. Furthermore, data affected by eye movement noise (EOG) or signals exceeding 
power thresholds of ± 100 uV were omitted. Post-denoising, EEG data was recorded in one-
second intervals, with the relative (%) power spectral density (PSD) for theta, alpha, beta, and 
gamma frequency bands calculated via fast Fourier transform (FFT).  

Data files from the MUSE device with unrecorded or anomalous readings from any of 
the four sensors were discarded. Participant data was also excluded if the recorded duration 
was less than 45 seconds or if EEG values remained constant for over 10 seconds (see Figure 4). 
After the cleaning process, a final review of anomalous channels and artificial segments was 
conducted through graphical analysis of trends for each channel and sensor. 
 
Experiment procedures and survey questionnaire 

Participants were equipped with an HMD device and EEG measurement equipment and 
were provided with a narration by a survey assistant: "You are walking down the street after 
leaving your home to go out for the day." A total of 40 VR videos were randomly selected, with 
10 from each of the four destinations, for participants to experience. They were then asked 
questions by the research assistant. To prevent participants from predicting the context of the 
next video, all 40 videos were fully intermixed. Additionally, to enhance immersion, the survey 
guide provided narration each time a VR video played:  

"You are on your way home from an appointment, and now you are stopping to look 
around."  

After experiencing each video, participants were asked to rate their fear of two types of 
crime on a Likert scale from 1 to 7. The specific questions were: 
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 "1. In the situation you are in right now, how much do you fear that a crime such as 
theft, violence, sexual assault, robbery, or murder could happen to you?  

2. In the situation you are in now, how much do you fear that a crime such as theft, 
violence, sexual assault, robbery, or murder could happen to someone else?"  

This process was repeated for a total of 10 videos to complete the VR experience. 
Participants then responded to a post-survey, rating the validity of the VR experience on a 5-
point Likert scale (1-not at all to 5-very much). This survey was based on Lessiter et al.'s (2001) 
realism measure, which included aspects such as physical spatiality/reality, immersion, 
ecological feasibility, and occurrence of adverse health effects. To ensure accuracy and 
minimize survey time, software was developed to automatically transmit a random sequence of 
videos based on each participant's identification number. Additionally, the software recorded 
information such as the duration of the participant's experience. 
 
Analysis method, variables, and model specification 

The data collected from the virtual reality (VR) experiments in this study possess a 
hierarchical structure. This is because the data are grouped at the rater level, meaning 
individual perceptions for the same rater are internally correlated, with the perceived fear of 
crime evoked by each video serving as the unit of analysis. After excluding 6 participants with 
inadequate EEG measurements across all scenarios, and those with poor scenario-specific EEG 
measurements, a total of 95 participants and 622 video scenarios were included in the analysis. 
The analysis of hierarchical data necessitates the application of multilevel models. However, the 
experimental data in this study are grouped not only by rater but also by video. Participants 
were asked to respond to the degree of fear of crime evoked by 10 randomly presented videos 
out of 40, and each video was rated by an average of 24 different participants, indicating a 
correlation between individual perceptions of the same video. In essence, the VR experimental 
data in this study form a hierarchical structure in a cross-classification design for two different 
superordinate groups (raters and videos). Consequently, this study adopts a cross-classification 
multilevel model(Table 4). The analysis model utilized a pooled sample model that combined all 
four sites, which were divided into residential and commercial areas within a neighborhood 
with average foot traffic. This allowed for the variation of validation variables through sites with 
varying illumination and foot traffic within an area with a similar physical environment. The 
dependent variables, Fear of Self-Victimization (FSV) and Fear of Others (FOV), cannot be 
analyzed simultaneously, so they were analyzed in separate models. Additionally, the average 
fear of FSV and FOV was analyzed, meaning there are three types of fear corresponding to the 
dependent variable. 

Valence was also calculated from the EEG data. As seen in previous studies, Valence is a 
measure of the degree of positivity or negativity and is determined by the difference between 
the left and right brain. However, individuals have different Valence levels when they begin 
participating in the experiment. Therefore, instead of the absolute numerical value of Valence, 
the change in Valence value that the participant experienced during the experiment was 
identified. For convenience, this was termed Valence Fluctuation and used as a dependent 
variable. A total of three dependent variables were entered into each model, with EEG as the 
dependent variable and fear as the dependent variable, resulting in a total of six models. The 
main test variable, illuminance, consists of three components: horizontal average illuminance, 
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vertical minimum illuminance, and vertical uniformity (minimum illuminance/average 
illuminance). However, since horizontal average illuminance is closely correlated with vertical 
minimum illuminance, and uniformity is also calculated using these two variables, it is 
challenging to establish their conceptual independence. Therefore, separate models were built 
to validate these three test variables, applying logarithmic values for horizontal average 
illuminance and vertical minimum illuminance to the model through linear transformation, as 
described in the "Cross-classified multilevel analysis" section below. As outlined above, the 
analyzed model consists of a total of 18 models. To summarize, the 18 models are divided 
according to the 3 types of the dependent variable "fear", in each case the dependent variable 
is divided into "EEG" or "fear". Furthermore, the models are conditioned on the 3 types of the 
validation variable "illumination". For this reason, the 18 models are organized as 3 (types of 
fear) * 2 (EEG, fear) * 3 (types of Illuminance) = 3 * 2 * 3 = 18 models. 

To determine the relationship between illuminance and fear of crime, a preliminary 
survey was conducted on personal characteristics. Personal characteristics include gender, age, 
and experience of other crimes. Other preliminary surveys were conducted, such as living 
arrangements and family members. The impact of personal characteristics on this relationship 
was also assessed.  Other variables were also included in the models to test the adequacy of the 
experimental controls.  First, a variable called 'current video presentation order' was included in 
all models to control for the potential effect of the presentation order of the 10 VR videos 
experienced by each participant on perceived fear of crime. Second, the warm-up task, which 
was provided to increase familiarity with the VR device and increase immersion in the VR 
experiment, was controlled for in which of the four sites the warm-up task was experienced, 
with site D as the baseline variable and the other three sites as dummy variables. Third, to 
control for differences between sites in the full-site models, a dummy variable was applied to 
each site, with site D as the baseline variable. Table 4 summarizes the definitions and levels of 
the variables. "Pedestrian and two-wheeler traffic" is a variable measured in units of footage 
(BETWEEN), meaning the number of all pedestrians, motorcycles, motorized scooters, etc. 
(excluding vehicles) that appear in the footage, regardless of whether there is vehicular traffic. 
The purpose of this variable is to capture the impact of the presence of moving people in a dark 
space late at night on fear of crime. 
 
Results 
Association between illuminance and perceived fear of crime  

Using EEG, we measured indices of arousal and valence fluctuation, and arousal 
fluctuation together with valence, and plotted them against horizontal mean illuminance and 
vertical minimum illuminance (Figure 5-10). The study used EEG to measure arousal and 
valence fluctuation and arousal fluctuation. The scatter plot showed a negative correlation 
between both illuminance levels and valence fluctuation. Therefore, valence fluctuation was 
chosen as the variable for all EEG and valence indices in the subsequent analysis (Figure 5). The 
box plots in Figures 6,7 show the time-varying values of fear of self-crime and fear of 
acquaintance-crime, as well as their valence and valence fluctuation, as illuminance varied with 
time. Fear increased as illuminance increased, while valence and valence fluctuation, which 
represent the degree of positivity, tended to decrease. The decrease in valence fluctuation was 
more pronounced.  
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Figures 8 through 10 depict the fear response and EEG response to different types of 
illumination. The Valence Fluctuation, which measures changes in positive emotion, is positively 
correlated with illumination and negatively correlated with fear response. In other words, 
participants experienced less fear of crime with higher illumination, and the EEG response was 
positively affected. Figure 8-10 shows that Valence did not change significantly with changes in 
illumination value, unlike horizontal and vertical illumination. To investigate the relationship 
between illuminance and the average fear of crime at different times of the day, we used the 
logarithm of illuminance to represent a negative linear function graph. The perceived fear of 
crime decreased rapidly as the illuminance increased.  Under illuminance conditions below a 
certain threshold luminance, the fear of crime decreases significantly as the illuminance 
increases. However, once the threshold luminance is reached, the fear of crime does not 
decrease significantly. This pattern was observed across all sites, even when vertical minimum 
illuminance was applied instead of horizontal average illuminance. Therefore, for a cross-
classification multilevel analysis, it is preferable to linearly transform the main test variable, 
illuminance values, to set the model in linear logarithmic form. However, in the case of 
uniformity, it was not transformed linearly in the model because it showed a linear relationship 
with fear of crime (see Figure 10). The results indicate that uniform street illuminance reduces 
the perceived fear of crime, which supports the findings of Fotios et al. (2019) who used both 
surveys and EEG measurements with VR. 
 
Cross-classified multilevel analysis  

In this study, cross-classified multilevel models were used to analyze the relationship 
between fear of crime (FSV, FOV) and various factors, with fear of crime serving as the 
dependent variable. The models produced posterior predictive p-values (PPP-values) greater 
than 0.05, indicating a strong overall fit, with PPP-values ranging between 0.4 and 0.5. The 
analysis showed that Valence Fluctuation (Kliemann, 2016; Cho, 2022), a metric derived from 
EEG data, has an inverse impact on fear of crime, indicating a negative correlation(Table 5). At 
the same time, illuminance has a dual effect: it positively influences EEG activity while inversely 
affecting fear of crime. These findings support the hypothesis that positive valence and higher 
illuminance levels are associated with reduced fear of crime (Boyce et al., 2000; Kim & Noh, 
2018; Mattoni et al., 2017; Son et al., 2023). The results highlight the importance of uniformity 
in average horizontal and minimum vertical illuminance in mitigating fear of crime, as 
evidenced by physiological responses. Further analysis showed that illuminance has a direct 
impact on EEG valence, which in turn affects fear of crime. Additionally, we investigated how 
personal characteristics modulate these effects(Table 6).  The study evaluated the impact of 
variables such as gender, prior crime experiences, sense of presence/immersion, and adverse 
physiological reactions on EEG responses and fear of crime. The results showed that sense of 
presence/immersion was a significant factor in 16 out of 18 models, affecting both Valence and 
Fear of Crime. Higher levels of presence and immersion in VR environments are closely linked to 
more pronounced EEG responses and increased fear of crime. This highlights the critical role of 
realistic VR environment development for accurate simulation of crime fear responses. 
However, gender, experience of other crimes, and adverse physiological reactions did not 
significantly influence EEG responses. This indicates the challenges in using EEG to assess 
individual-level variables such as gender and experience. Therefore, while EEG can be a reliable 
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measure of the physical environment's impact on fear of crime, its utility in capturing individual 
differences is limited. 

 In summary, our cross-classified multilevel analysis model findings suggest that higher 
illuminance levels are associated with positive changes in EEG valence and reduced fear of 
crime. This supports the idea that illuminance has a direct impact on EEG activity, which in turn 
reflects subjective perceptions of crime fear. These results underscore the interconnectedness 
of environmental factors, physiological responses, and subjective experiences in the context of 
urban safety. 

 
Conclusion 

This paper demonstrates that illuminance levels not only affect fear of crime but also 
EEG. Therefore, EEG can be used as a valid tool for measuring fear of crime, complementing the 
limitations of surveys with objective data. The study also quantified participants' perceptions as 
the virtual environment changed in a non-survey way. This study is the first attempt to analyze 
the relationship between illuminance and fear of crime by applying a quasi-controlled 
experiment based on recorded VR with EEG. The research conclusively shows that changes in 
illuminance can elicit measurable changes in brain activity associated with fear, suggesting a 
direct link between environmental illuminance and the fear of crime. This information is crucial 
for urban planning and public safety strategies, as it emphasizes the significance of taking 
psychological comfort into account when designing public spaces. 

Although our findings are significant, it is important to note that they have limitations. 
The use of recorded VR environments, instead of live experiences, may not fully capture the 
nuances of real-world fear responses. This limitation suggests that while EEG responses provide 
valuable insights, they may differ in real-world scenarios where unpredictable elements are 
present. Future research should aim to incorporate more realistic or live environmental 
conditions to better simulate real-world responses. This study examines the impact of 
illuminance on reducing fear of crime, using the term 'fear of crime' instead of 'reassurance' as 
used in CIE (236-2019) and recent studies (Fotios et al., 2019). While 'fear of crime' is a widely 
accepted term in the field, it has been criticized for potentially triggering such fear (Farrel et 
al.1997; Boyce, 2019). Individual perception may be a factor and can reflect sociodemographic 
situations (Painter, 1996; Svechkina et al., 2020; Portnov et al., 2020; Fotios et al., 2022). 
Additionally, this study aimed to minimize the experiment time for each participant. Therefore, 
specific types of fear of crime, such as fear of theft, violence, sexual assault, robbery, or 
murder, could not be considered.  

Furthermore, the survey questionnaire did not account for potential errors in human 
perception that could result in range-bias, as addressed by the day dark approach suggested by 
Boyce et al. (2000).  Given these limitations, future research should investigate more advanced 
VR technologies that provide greater realism. Expanding the range of biological responses 
measured, such as incorporating pupil dilation, heart rate, and galvanic skin response, will 
provide a more comprehensive understanding of fear reactions. Additionally, enhancing the 
diversity of participants and settings will improve the generalizability of our findings across 
different socio-cultural contexts. The use of emerging game engine technologies that simulate 
dynamic changes in illuminance within virtual reality (VR) environments could greatly enhance 
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experimental realism. These advancements would not only strengthen empirical evidence, but 
also provide more nuanced insights into the psychological effects of illuminance on fear.  

In conclusion, this study represents a significant advancement in comprehending the 
psychological effects of urban lighting. By addressing the limitations and incorporating the 
suggested future research directions, we can deepen our understanding of how environmental 
design influences human emotions and behaviors. This research not only contributes to 
academic discourse but also has practical implications for creating safer and more 
psychologically comfortable urban environments. This paper demonstrates that illuminance 
levels significantly impact EEG responses, establishing EEG as a valid tool for objectively 
measuring fear of crime. The research goes beyond previous perceptions of illuminance levels, 
providing a novel approach to understanding the interplay between environmental factors and 
psychological responses. 
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Table 1. Types of EEG and their features 
Wave Features  

State of consciousness Frequency (Hz) 
δ Unconscious level 0–4 
θ Subconscious level 4–7 

α Consciousness and 
subconscious level 8–12 

β Level of consciousness 13–17 
γ  Level of consciousness 31–50 

 

Table 2. Previous papers using VR and EEG 
Article VR Emotional Information Participants Scenario (N) 

1 O Valence / Arousal / 
Self-Assessment Manikin 38 (60) 4 (N = 152) 

2 O Frontal alpha asymmetry (FAA)  
/ Survey(after experiment) 22 9 (N = 198) 

3 X Valence / Arousal /Survey /  
Self-Assessment Manikin 28 4 (N = 112) 

4 O Arousal (RAB indicators)/ 
 Survey(after experiment) 33 1 (N=33) 

5 X Valence / Arousal /Survey /  
Self-Assessment Manikin 12 4 (N=48) 

Note. 1) Morales et al., 2018 2) Guizzo et al., 2020 3) Alakus et al., 2020 4) Kim et al., 2021 5) 
Cho et al., 2022 
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Table 3. Date and time of measuring the illumination of each site 

Division 

[Site A] 
Residential, 

High pedestrian 
volume 

[Site B] 
Residential, 

Low pedestrian 
volume 

[Site C] 
Commercial, 

High pedestrian 
volume 

[Site D] 
Commercial, 

Low pedestrian 
volume 

Day April 26th, 2021 
(Mon) 

April 30th, 2021 
(Fri) 

April 28th, 2021 
(Wed) 

April 29th, 2021 
(Thu) 

Weather Cloudy Cloudy Generally Cloudy Cloudy 
Minimum 

temperature 10°C 11°C 13°C 12°C 

Maximum 
temperature 21°C 16°C 20°C 21°C 

Sunset¹ 19:17 19:21 19:19 19:20 
1st 18:00 18:04 18:02 18:03 
2nd 18:30 18:34 18:32 18:33 
3rd 19:00 19:04 19:02 19:03 
4th 19:15 19:19 19:17 19:18 
5th 19:30 19:34 19:32 19:33 
6th 19:45 19:49 19:47 19:48 
7th 20:00 20:04 20:02 20:03 
8th 20:15 20:19 20:17 20:18 
9th 20:30 20:34 20:32 20:33 

10th 20:45 20:49 20:47 20:48 
11th 21:00 21:04 21:02 21:03 
12th 22:00 22:04 22:02 22:03 
13th 22:30 22:34 22:32 22:33 

1) Sunset time is based in Seoul(GMT +9) 
 
Table 4. Definition and level of the variables in the analysis 
Variable Note Level 
Dependent variables   

Fear of self-victimization (FSV) 7-point Likert scale Within (person*video) 
Fear of others’ victimization (FOV) 7-point Likert scale Within (person*video) 
Valence Fluctuation  (EEG) Direct measurement Within (person*video) 
Test variables   

ln (horizontal mean luminance) Direct measurement Between (video) 
ln (vertical min. luminance) Direct measurement Between (video) 
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Vertical uniformity Vertical min/avg luminance Between (video) 
Control variables   

Valence Fluctuation  (EEG) Direct measurement Within (person*video) 
Pedestrian/two-wheeled vehicle 

traffic* Those appearing in the video Between (video) 

Age  Between (person) 
Gender Male = 1 Between (person) 
Education Postgraduate or higher =1 Between (person) 
Residential type    

- detached/multi-family** Multifamily, townhouse Between (person) 
- apartment house** Apartment, multi-use, officetel Between (person) 
Household size   
- one-person household Ref.: 3+ Between (person) 
- two-person household Ref.: 3+ Between (person) 
Familiarity with the area Familiar = 1 Between (person) 
1-week back alley walk   
- 3–4 days Ref.: less than 3 days Between (person) 
- 5–7 days Ref.: less than 3 days Between (person) 
Avg. returning home time   
- 8–10 pm Ref.: before 8 pm Between (person) 
- 10 pm or later Ref.: before 8 pm Between (person) 
Experience of other crimes Yes = 1 Between (person) 
Risk of FSV 4-point scale 

 (1 = very low, 2 = low, 3 = high, 
4 = very high) 

Between (person) 
Self-defense level Between (person) 

Severity and continuity of harm (self) Between (person) 
Past experience of VR  Yes = 1 Between (person) 
- sense of presence/immersion 

Cf. Factor analysis result 
Between (person) 

- adverse physiological reactions  Between (person) 
- ecological validity  Between (person) 
Order or presentation of the current 

video On value out of 1 to 10 Within (person*video) 

Current video (Site A) 
Ref.: Site D 

Between (video) 
Current video (Site B) Between (video) 

Current video (Site C) Between (video) 
* All pedestrians, motorbikes, and electric kickboards appeared in the video 
** Ref. variable is other residential types (dormitories, tiny studios, etc.) 
  



UDA 2024 Conference Proceedings – Final paper format 
 

19 
 

Table 5. Total effects of EEG and illuminance on fear of crime 

  
Ln (horizontal 

mean 
illuminance) 

Ln (vertical min 
illuminance) 

Vertical 
uniformity 

  Estimate p-value Estimate p-value Estimate p-value 
EEG  

Valence Fluctuation Affects 
FSV -0.241 0.000 -0.240 0.000 -0.250 0.000 

Valence Fluctuation Affects 
FOV -0.309 0.000 -0.307 0.000 -0.316 0.000 

Valence Fluctuation Affects 
Average FC -0.274 0.000 -0.273 0.000 -0.282 0.000 

Illuminance   

Illuminance Affects Valence 
Fluctuation  0.081 0.000 0.074 0.000 0.626 0.001 

Illuminance Affects FSV -0.267 0.000 -0.255 0.000 -2.807 0.000 

Illuminance Affects FOV -0.344 0.000 -0.329 0.000 -3.525 0.000 

Illuminance Affects Average FC -0.306 0.000 -0.292 0.000 -3.168 0.000 
 
Table 6. Total effects of personal characteristics on valence and fear of crime 

  Valence Fluctuation   Fear of Crime* Valence Fluctuation   Fear of Crime ** Valence Fluctuation   Fear of Crime *** 

 Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

Gender 

0.051 0.341 -1.112 0.000 0.049 0.346 -0.414 0.102 0.049 0.349 -0.763 0.004 

0.052 0.339 -1.111 0.000 0.049 0.346 -0.414 0.102 0.050 0.346 -0.761 0.004 

0.054 0.331 -1.125 0.000 0.050 0.343 -0.412 0.103 0.053 0.333 -0.777 0.003 

Experience of other 
crimes 

0.054 0.331 -1.125 0.000 -0.057 0.291 0.408 0.077 -0.054 0.302 0.468 0.028 

-0.056 0.294 0.529 0.009 -0.057 0.291 0.408 0.077 -0.055 0.298 0.465 0.029 

-0.065 0.264 0.532 0.008 -0.058 0.287 0.405 0.079 -0.064 0.265 0.470 0.027 

Sense of 
presence/immersion 

-0.102 0.012 0.199 0.018 -0.107 0.009 0.280 0.011 -0.104 0.010 0.237 0.012 

-0.101 0.013 0.196 0.019 -0.107 0.000 0.280 0.011 -0.104 0.011 0.234 0.013 

-0.106 0.009 0.203 0.015 -0.106 0.009 0.277 0.012 -0.108 0.007 0.241 0.010 

Adverse 
physiological 

reaction 

-0.040 0.198 0.219 0.014 -0.040 0.199 0.178 0.081 -0.040 0.198 0.199 0.035 

-0.041 0.193 -0.087 0.014 -0.040 0.199 0.178 0.081 -0.041 0.193 0.198 0.036 

-0.046 0.164 0.221 0.012 -0.041 0.194 0.177 0.083 -0.047 0.155 0.202 0.032 

Note. Shading: Not Include “0” within 95% confidence interval, * Fear of self-victimization (FSV) 
**Fear of others’ victimization (FOV) ***Average Fear of crime, In a row, from top to bottom, 
ln(horizontal average illuminance), ln(vertical minimum illuminance), vertical uniformity 
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Figure 1. Site location and day/night view 

 
Note. Evaluation ratings were made during the 2014 fall academic term. 
 
Figure 2. Illuminance measurement method and procedure 

 

 

 

 

  

 

 

Figure 3. Muse2 (Left), Electrode Position (Right) 
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Figure 4. Before refinement (left) After refinement (right) 

  

 
Figure 5. Scatterplot of Valence and Arousal as a function of illuminance 

  

Figure 6. Fear of crimes by time 
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Figure 7. Valence and Valence Fluctuation by time 

       
 

 
Figure 8. Fear of crime and Valence by ln (horizontal mean luminance) 
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Figure 9. Fear of crime and Valence by ln (vertical min. luminance)
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Figure 10. Fear of crime and Valence by Vertical uniformity 

 

 

 


